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Elementary Graph 
Algorithms

Based on CLRS Sec. 20 and
Appendix B.4 



Graph: Terminology
• A Graph 𝐺 = (𝑉, 𝐸)

• V = Set of vertices (or nodes)

• E = Set of edges ⊆ (𝑉 × 𝑉)

• 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} (vertices are typically 

denoted as 𝑣𝑖)

• Number of vertices, 𝑉 = 𝑛

• 𝐸 = 𝑒1 = 𝑣𝑖 , 𝑣𝑗 , … , 𝑒𝑚 = 𝑣𝑘 , 𝑣ℓ

• Number of edges, 𝐸 = 𝑚

• |𝐸|  =  𝑂( 𝑉 2)
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• 𝑉 = 1,2,3,4,5

• |𝑉| = 5

• 𝐸 = { 1,2 , 1,5 , 2,3 , 2,4 , 

2,5 , 3,4 , (4,5)}

• |𝐸| = 7

Example:



Graph: Terminology
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• Types of graphs

• Undirected: edge (𝑢, 𝑣)  =  (𝑣, 𝑢)

• CLRS definition forbids self loop.

• Directed (digraph): (𝑢, 𝑣) is edge from 𝑢 to v.

• Self loop possible. (Simple digraph has no self 

loop)

• Weighted: each edge has an associated weight, 

given by a weight function 𝑤 ∶  𝐸 → 𝑹

• Dense: |𝐸|  𝑉 2

• Sparse: |E| << |V|2
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• Degree of a vertex deg(𝑣): Number of edges 

incident to 𝑣

• For directed graph, in-degree and out-degree of a 

vertex 𝑣 are the number of edges to and from 𝑣.

• If (𝑢, 𝑣)  𝐸, then vertex 𝑣 is adjacent to 

vertex u.

• Adjacency relationship is:

• Symmetric if G is undirected

• Not necessarily so if G is directed
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• Path: 

• A sequence of vertices ⟨𝑣1, 𝑣2, … , 𝑣𝑘⟩ where ∀1 ≤ 𝑖 ≤ 𝑘 − 1, 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸

• Length of the path: Number of  edges in the path.

• Path is simple if no vertex is repeated.

• Cycle

• Path that ends back at starting nod

• G is connected:
• There is a path between every pair of vertices.
• |E|  |V| – 1.
• Furthermore, if |E| = |V| – 1, then G is a tree.

• Other definitions in Appendix B (B.4 and B.5) as needed

• ⟨1,2,3⟩ is a path

• 1,2,5,1  is a cycle



Applications
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• Everywhere!

• Road or communication network

• Social media

• Protein-protein interactions

• etc.



• Two standard ways
• Adjacency Lists

• Adjacency Matrix

Graph Representations
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Adjacency Lists
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• Consists of an array 𝐴𝑑𝑗 of |𝑉| lists

• One list per vertex

• For 𝑢 ∈  𝑉, 𝐴𝑑𝑗[𝑢] consists of all vertices adjacent to 𝑢
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Adjacency Lists
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• For directed graphs:

• Sum of lengths of all adj. lists is

           σ𝑣∈𝑉  out-degree(𝑣) = |𝐸|

• Total storage: (𝑉 + 𝐸)

• For undirected graphs:

• Sum of lengths of all adj. lists is

           σ𝑣∈𝑉  degree(𝑣) = 2|𝐸|

• Total storage: (𝑉 + 𝐸)



Adjacency Lists
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• Pros

• Space-efficient, when a graph is sparse.

• Can be modified to support many graph variants.

• Cons

• Determining if an edge (𝑢, 𝑣) 𝐸 is not efficient.

• Have to search in 𝑢’s adjacency list in (𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)) time.

• (𝑉) in the worst case.



Adjacency Matrix
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• |𝑉|  |𝑉| matrix 𝐴

• Number vertices from 1 to |𝑉| in some arbitrary manner
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Adjacency Matrix
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• Space: (𝑉2)

• Not memory efficient for large graphs

• Time: to list all vertices adjacent to 𝑢: (𝑉)

• Time: to determine if 𝑢, 𝑣 ∈ 𝐸: (1)

• Can store weights instead of bits for weighted graph.
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Graph Search
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• Searching a graph:

• Systematically follow the edges of a graph to visit the vertices of 

the graph

• Used to discover the structure of a graph

• Standard graph-searching algorithms

• Breadth-first Search (BFS)

• Depth-first Search (DFS)
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Breadth-First Search (BFS)
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• Given a graph 𝐺 = 𝑉, 𝐸  and a source vertex 𝑠, want to discover vertices 

reachable from 𝑠 and their shortest path distance from 𝑠 

• Input: Graph 𝐺 =  (𝑉, 𝐸), either directed or undirected, and a source 

vertex 𝑠 ∈  𝑉

• Output: 

• 𝑣. 𝑑 = distance (smallest # of edges, or shortest path) from 𝑠 to 𝑣, for all 

𝑣 ∈ 𝑉. 𝑣. 𝑑 = ∞ if 𝑣 is not reachable from 𝑠.

• 𝑣.  =  𝑢 such that (𝑢, 𝑣) is last edge on shortest path 𝑠 𝑣

• 𝑢 is 𝑣’s predecessor.

• Builds breadth-first tree with root 𝑠 that contains all reachable vertices
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Breadth-First Search (BFS)
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• We want our search algorithm to produce shortest distance from 𝑠 to 𝑣 

for all 𝑣. 

• Idea: 

• Notation: Shortest-path distance from 𝑠 to 𝑣 is 𝛿(𝑠, 𝑣)

• If 𝛿 𝑠, 𝑣 = 𝑥 ≥ 1, then there is a vertex 𝑢 with 𝛿 𝑠, 𝑢 = 𝑥 − 1

• We want to discover 𝑣 via 𝑢

s u v

𝑥

𝑥 − 1
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Breadth-First Search (BFS)
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• Expands the frontier between discovered and undiscovered 

vertices uniformly across the breadth of the frontier.

• A vertex is “discovered” the first time it is encountered during the 

search.

• A vertex is “finished” if all vertices adjacent to it have been 

discovered.

• Colors the vertices to keep track of progress.

• White – Undiscovered.

• Gray – Discovered but not finished.

• Black – Finished.

• Colors are basically different numbers/characters

• Colors are also not required 
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2
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Breadth-First Search (BFS)
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i) Dequeue 𝒔, ii) Enqueue 𝒔’s undiscovered 
neighbors {𝑟, 𝑣, 𝑢}, make then gray, and 
update their 𝑑 and 𝜋, iii) Make 𝒔 black

Q holds discovered by unfinished vertices (gray 
vertices).



Breadth-First Search (BFS)
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i) Dequeue 𝒓, ii) Enqueue 𝒓’s undiscovered 
neighbors {𝑡, 𝑤}, make then gray, and 
update their 𝑑 and 𝜋, iii) Make 𝒓 black

Q holds discovered by unfinished vertices (gray 
vertices).



Breadth-First Search (BFS)
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i) Dequeue 𝒖, ii) Enqueue 𝒖’s undiscovered 
neighbors {𝑦}, make then gray, and 
update their 𝑑 and 𝜋, iii) Make 𝒖 black 

Q holds discovered by unfinished vertices (gray 
vertices).



Breadth-First Search (BFS)
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i) Dequeue 𝒗, ii) Enqueue 𝒗’s undiscovered 
neighbors (None), make then gray, and 
update their 𝑑 and 𝜋, iii) Make 𝒗 black 

Q holds discovered by unfinished vertices (gray 
vertices).



Breadth-First Search (BFS)
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i) Dequeue 𝒕, ii) Enqueue 𝒕’s undiscovered 
neighbors (None), make then gray, and 
update their 𝑑 and 𝜋, iii) Make 𝒕 black 

Q holds discovered by unfinished vertices (gray 
vertices).



Breadth-First Search (BFS)
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i) Dequeue 𝒘, ii) Enqueue 𝒘’s undiscovered 
neighbors {𝑥, 𝑧}, make then gray, and 
update their 𝑑 and 𝜋, iii) Make 𝒘 black 

Q holds discovered by unfinished vertices (gray 
vertices).



Breadth-First Search (BFS)

COMP550@UNC 23

i) Dequeue 𝒚, ii) Enqueue 𝒚’s undiscovered 
neighbors (None), make then gray, and 
update their 𝑑 and 𝜋, iii) Make 𝒚 black 

Q holds discovered by unfinished vertices (gray 
vertices).



Breadth-First Search (BFS)
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i) Dequeue 𝒙, ii) Enqueue 𝒙’s undiscovered 
neighbors (None), make then gray, and 
update their 𝑑 and 𝜋, iii) Make 𝒙 black 

Q holds discovered by unfinished vertices (gray 
vertices).



Breadth-First Search (BFS)
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i) Dequeue 𝒛, ii) Enqueue 𝒛’s undiscovered 
neighbors (None), make then gray, and 
update their 𝑑 and 𝜋, iii) Make 𝒛 black 

Q holds discovered by unfinished vertices (gray 
vertices).



Breadth-First Search (BFS)
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BFS tree formed by blue edges

Q holds discovered by unfinished vertices (gray 
vertices).



BFS Time Complexity
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• Initialization (lines 1-4): Θ 𝑉

• Lines 5-9: Θ(1)

• Aggregate analysis for lines 10-18

• Each vertex is enqueued and dequeued at most 

once

• Line 11, 14-16 take Θ(𝑉) time

• Adjacency list of each vertex is scanned at most 

once.

• Line 12-13 take Θ 𝐸  time

• With adjacency list, running time Θ V + E

• With adjacency matrix, running time Θ(𝑉2)



Depth-First Search (DFS)
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• Explore edges out of the most recently discovered vertex v.

• When all edges of v have been explored, backtrack to explore other 

edges leaving the vertex from which v was discovered (its predecessor).

• “Search as deep as possible first.”

• Continue until all vertices reachable from the original source are 

discovered.

• If any undiscovered vertices remain, then one of them is chosen as a 

new source and search is repeated from that source.



Depth-First Search (DFS)
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• Input: 𝐺 =  (𝑉, 𝐸), directed or undirected. No source vertex!

• Output:

•  2 timestamps on each vertex. Integers between 1 and 2|𝑉|

• 𝑣. 𝑑 = discovery time (𝑣 turns from white to gray)

• 𝑣. 𝑓 = finishing time (𝑣 turns from gray to black)

• 𝑣.  : predecessor of 𝑣 =  𝑢, such that v was discovered during the 

scan of 𝑢’s adjacency list

• Uses the same coloring scheme for vertices as BFS



Depth-First Search (DFS)
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DFS(𝑮)

1.  for each vertex 𝑢 ∈  𝐺. 𝑉

2.       𝑢. 𝑐𝑜𝑙𝑜𝑟 = white

3.       𝑢. 𝜋 = NIL

4.  time = 0

5.  for each vertex 𝑢 ∈  𝐺. 𝑉

6.        if 𝑢. 𝑐𝑜𝑙𝑜𝑟 == white

7.              DFS-Visit(𝐺, 𝑢)

Uses a global timestamp time.

DFS-Visit(𝑮, 𝒖)

1.  𝑢.color = GRAY    //white vertex u has been discovered

2.  time = time + 1

3.  u.d = time

4.  for each 𝑣  G.Adj[𝑢]   // explore each edge (𝑢, 𝑣)

5.        if 𝑣.color = WHITE

6.                𝑣. = u

7.                DFS-Visit(𝐺, 𝑣)

8.   𝑢.color = BLACK     // Blacken u;  it is finished

9.   𝑢.f = time 

10.  time = time + 1



Depth-First Search (DFS)
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(Courtesy of Prof. Jim Anderson)



Depth-First Search (DFS)

COMP550@UNC 32



Depth-First Search (DFS)
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Depth-First Search (DFS)
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Depth-First Search (DFS)
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Back Edge: (𝑥, 𝑣) is a back edge if it is 
explored when both 𝑥 and 𝑣 are grey.
(𝑥 is discovered by a path from 𝑣, i.e., 
𝒗 is an ancestor of 𝒙) 



Depth-First Search (DFS)
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Depth-First Search (DFS)

COMP550@UNC 37



Depth-First Search (DFS)
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Depth-First Search (DFS)
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Forward Edge: (𝑢, 𝑥) is a forward edge 
if 𝑥 is discovered by a “>1”-length path 
from 𝑢. (𝒙 is a descendant of 𝒖) 



Depth-First Search (DFS)
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Depth-First Search (DFS)
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Depth-First Search (DFS)
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Cross Edge: (𝑤, 𝑦) is a back edge if no 
ancestor descendant relationships 
between them.



Depth-First Search (DFS)
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Depth-First Search (DFS)
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Depth-First Search (DFS)
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Self loops are considered as back edge



Depth-First Search (DFS)
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Depth-First Forest
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• DFS creates a forest (subgraph induced by the 

red edges in the example)

• Forest: An acyclic graph G that may be 

disconnected. (G has multiple trees)

• Tree edge: Edges in the forest

• Edge that discovers new vertices 

• Recall: 

• Back edge: edge from a descendant to an ancestor

• Forward edge: edge from ancestor to a proper 

descendant



Depth-First Forest
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• Recall: 

• Back edge: edge from a descendant to an ancestor

• Forward edge: edge from ancestor to a proper 

descendant

• Cross edge: no ancestor descendant relationship

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

• Vocabulary:

• End-points of tree edges are predecessors and successors (e.g., 𝑣 is processor of 𝑦)

• 𝑢 is an ancestor of 𝑣 is we can go to 𝑣 from 𝑢 using tree edges only

• u is a proper ancestor of v if we can go to 𝑣 from 𝑢 using at least two tree edges 

only



Depth-First Search (DFS)
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• DFS(𝐺) lines 1-3 & 5-6 take (V) time, line 

4 takes Θ 1  time

• DFS-Visit is called once for each white 

vertex 𝑢 ∈ 𝑉 when it’s painted gray the 

first time.  Lines 3-6 of DFS-Visit is 

executed |𝐴𝑑𝑗[𝑢]| times. The total cost of 

executing DFS-Visit is 𝑣𝑉|𝐴𝑑𝑗[𝑢]|  =  (𝐸) 

• Total running time of DFS is (𝑉 + 𝐸)



Parentheses Theorem
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• 𝑢. 𝑑 <  𝑣. 𝑑 <  𝑢. 𝑓 <  𝑣. 𝑓 is impossible

• Like parentheses:

• OK: ( ) [ ] ( [ ] ) [ ( ) ]

• Not OK: ( [ ) ] [ ( ] )

Theorem 20.7

For all 𝑢, 𝑣, exactly one of the following holds:

1. The intervals [𝑢. 𝑑, 𝑢. 𝑓] and [𝑣. 𝑑,  𝑣. 𝑓] are entirely disjoint and neither 𝑢 
nor 𝑣 is a descendant of the other.

2. [𝑣. 𝑑,  𝑣. 𝑓] is contained within [𝑢. 𝑑, 𝑢, 𝑓] and 𝑣 is a descendant of 𝑢.

3. 𝑢. 𝑑,  𝑢. 𝑓  is contained within [𝑣. 𝑑,  𝑣. 𝑓] and 𝑢 is a descendant of 𝑣.



Parentheses Theorem
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(u (v (y (x x) y) v u) (w (z z) w)



Topological Sorting
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• Directed Acyclic Graph (DAG): directed graph with no cycle

• Can be used to model dependency relationship

• Topological Sort: Ordering of vertices of a DAG so that for any edge 

𝑢, 𝑣 , 𝑢 appears before 𝑣 in the ordering

u v w

x y z

w z v yu x



Topological Sorting
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• Topological Sort: Ordering of vertices of a DAG so that for any edge 

𝑢, 𝑣 , 𝑢 appears before 𝑣 in the ordering



Thank You!
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