

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

COMP 550 Algorithm and Analysis

Elementary Graph Algorithms

Based on CLRS Sec. 20 and Appendix B.4

- A Graph G = (V, E)
 - V = Set of vertices (or nodes)
 - E = Set of edges $\subseteq (V \times V)$
- $V = \{v_1, v_2, ..., v_n\}$ (vertices are typically denoted as v_i)
 - Number of vertices, |V| = n
- $E = \{e_1 = (v_i, v_j), \dots, e_m = (v_k, v_\ell)\}$
 - Number of edges, |E| = m
 - $|E| = O(|V|^2)$

•
$$V = \{1, 2, 3, 4, 5\}$$

Example:

•
$$|V| = 5$$

•
$$E = \{(1,2), (1,5), (2,3), (2,4), (2,5), (3,4), (4,5)\}$$

• |E| = 7

- Types of graphs
 - Undirected: edge (u, v) = (v, u)
 - CLRS definition forbids self loop.
 - Directed (digraph): (u, v) is edge from u to v.
 - Self loop possible. (Simple digraph has no self loop)
 - Weighted: each edge has an associated weight given by a weight function $w : E \rightarrow R$
 - Dense: $|E| \approx |V|^2$
 - Sparse: |E| << |V|²

- Degree of a vertex deg(v): Number of edges incident to v
 - For directed graph, in-degree and out-degree of a vertex v are the number of edges to and from v.
- If $(u, v) \in E$, then vertex v is adjacent to vertex u.
- Adjacency relationship is:
 - Symmetric if G is undirected
 - Not necessarily so if G is directed

Undirected graph

Directed graph

Degree of c is 3 In-Degree of c is 1

Out-degree of c is 2

- Path:
 - A sequence of vertices $\langle v_1, v_2, \dots, v_k \rangle$ where $\forall 1 \leq i \leq k 1$, $(v_i, v_{i+1}) \in E$
 - Length of the path: Number of edges in the path.
 - Path is simple if no vertex is repeated.
- Cycle
 - Path that ends back at starting nod
- G is connected:
 - There is a path between every pair of vertices.
 - $|E| \ge |V| 1$.
 - Furthermore, if |E| = |V| 1, then G is a tree.
- Other definitions in Appendix B (B.4 and B.5) as needed

- (1,2,3) is a path
- <1,2,5,1 > is a cycle

Applications

- Everywhere!
 - Road or communication network
 - Social media
 - Protein-protein interactions
 - etc.

Graph Representations

• Two standard ways

Adjacency Lists

Adjacency Matrix

b

·d)

0

a

b

С

d

b

С

d

d

С

Adjacency Lists

- Consists of an array Adj of |V| lists
- One list per vertex
- For $u \in V$, Adj[u] consists of all vertices adjacent to u

If weighted, store weights also in adjacency lists

Adjacency Lists

- For directed graphs:
 - Sum of lengths of all adj. lists is

$$\sum_{v \in V}$$
 out-degree(v) = |E|

- Total storage: $\Theta(V + E)$
- For undirected graphs:
 - Sum of lengths of all adj. lists is

$$\sum_{v \in V} \text{ degree}(v) = 2|E|$$

• Total storage: $\Theta(V + E)$

Adjacency Lists

• Pros

- Space-efficient, when a graph is sparse.
- Can be modified to support many graph variants.
- Cons
 - Determining if an edge $(u, v) \in E$ is not efficient.
 - Have to search in u's adjacency list in $\Theta(degree(u))$ time.
 - $\Theta(V)$ in the worst case.

Adjacency Matrix

- $|V| \times |V|$ matrix A
- Number vertices from 1 to |V| in some arbitrary manner

$$A[i, j] = a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

Adjacency Matrix

- Space: $\Theta(V^2)$
 - Not memory efficient for large graphs
- Time: to list all vertices adjacent to $u: \Theta(V)$
- Time: to determine if $(u, v) \in E: \Theta(1)$
- Can store weights instead of bits for weighted graph.

Graph Search

- Searching a graph:
 - Systematically follow the edges of a graph to visit the vertices of the graph
- Used to discover the structure of a graph
- Standard graph-searching algorithms
 - Breadth-first Search (BFS)
 - Depth-first Search (DFS)

- Given a graph G = (V, E) and a source vertex s, want to discover vertices reachable from s and their shortest path distance from s
- <u>Input</u>: Graph G = (V, E), either directed or undirected, and a source vertex $s \in V$
- <u>Output</u>:
 - v.d = distance (smallest # of edges, or shortest path) from s to v, for all $v \in V. v.d = \infty$ if v is not reachable from s.
 - $v.\pi = u$ such that (u, v) is last edge on shortest path $s \sim v$
 - *u* is *v*'s predecessor.
 - Builds breadth-first tree with root s that contains all reachable vertices

- We want our search algorithm to produce shortest distance from s to v for all v.
- <u>Idea</u>:
 - <u>Notation</u>: Shortest-path distance from s to v is $\delta(s, v)$
 - If $\delta(s, v) = x \ge 1$, then there is a vertex u with $\delta(s, u) = x 1$
 - We want to discover v via us x - 1yx

- Expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier.
 - A vertex is "discovered" the first time it is encountered during the search.
 - A vertex is "finished" if all vertices adjacent to it have been discovered.
- Colors the vertices to keep track of progress.
 - White Undiscovered.
 - Gray Discovered but not finished.
 - Black Finished.
 - Colors are basically different numbers/characters
 - Colors are also not required

Discovered

O Undiscovered

BFS(G, s)

- 1 for each vertex $u \in G. V \{s\}$
- 2 u.color = WHITE
- 3 $u.d = \infty$
- 4 $u.\pi = \text{NIL}$
- 5 s.color = GRAY
- $6 \quad s.d = 0$
- 7 $s.\pi = \text{NIL}$
- 8 $Q = \emptyset$
- 9 ENQUEUE(Q, s)
- 10 while $Q \neq \emptyset$
- 11 u = DEQUEUE(Q)
- for each vertex v in G.Adj[u] // search the neighbors of u 12 **if** v.color == WHITE// is v being discovered now? 13 v.color = GRAY14 v.d = u.d + 115 16 $v.\pi = u$ ENQUEUE(Q, v) $\parallel v$ is now on the frontier 17u.color = BLACK// u is now behind the frontier 18

Q holds discovered by unfinished vertices (gray vertices).

i) Dequeue s, ii) Enqueue s's undiscovered neighbors $\{r, v, u\}$, make then gray, and update their d and π , iii) Make s black

BFS(G, s)

- 1 for each vertex $u \in G. V \{s\}$
- 2 u.color = WHITE
- 3 $u.d = \infty$
- 4 $u.\pi = \text{NIL}$
- 5 s.color = GRAY
- $6 \quad s.d = 0$
- 7 $s.\pi = \text{NIL}$
- 8 $Q = \emptyset$
- 9 ENQUEUE(Q, s)
- 10 while $Q \neq \emptyset$

```
11 u = \text{DEQUEUE}(Q)
```

```
for each vertex v in G.Adj[u] // search the neighbors of u
12
             if v.color == WHITE
                                        \parallel is v being discovered now?
13
                 v.color = GRAY
14
                 v.d = u.d + 1
15
16
                 v.\pi = u
                 ENQUEUE(Q, v)
                                        \parallel v is now on the frontier
17
        u.color = BLACK
                                        // u is now behind the frontier
18
```

Q holds discovered by unfinished vertices (gray vertices).

i) Dequeue r, ii) Enqueue r's undiscovered neighbors $\{t, w\}$, make then gray, and update their d and π , iii) Make r black

BFS(G, s)

- 1 for each vertex $u \in G. V \{s\}$
- 2 u.color = WHITE
- 3 $u.d = \infty$
- 4 $u.\pi = \text{NIL}$
- 5 s.color = GRAY
- $6 \quad s.d = 0$
- 7 $s.\pi = \text{NIL}$
- 8 $Q = \emptyset$
- 9 ENQUEUE(Q, s)
- 10 while $Q \neq \emptyset$

```
11 u = \text{DEQUEUE}(Q)
```

```
for each vertex v in G.Adj[u] // search the neighbors of u
12
            if v.color == WHITE
                                       // is v being discovered now?
13
                 v.color = GRAY
14
                 v.d = u.d + 1
15
16
                 v.\pi = u
                 ENQUEUE(Q, v)
                                       \parallel v is now on the frontier
17
        u.color = BLACK
                                       // u is now behind the frontier
18
```

Q holds discovered by unfinished vertices (gray vertices).

i) Dequeue u, ii) Enqueue u's undiscovered neighbors $\{y\}$, make then gray, and update their d and π , iii) Make u black

BFS(G, s)

- 1 for each vertex $u \in G. V \{s\}$
- 2 u.color = WHITE
- 3 $u.d = \infty$
- 4 $u.\pi = \text{NIL}$
- 5 s.color = GRAY
- $6 \quad s.d = 0$
- 7 $s.\pi = \text{NIL}$
- 8 $Q = \emptyset$
- 9 ENQUEUE(Q, s)
- 10 while $Q \neq \emptyset$
- 11 u = DEQUEUE(Q)
- for each vertex v in G.Adj[u] // search the neighbors of u 12 **if** v.color == WHITE// is v being discovered now? 13 v.color = GRAY14 v.d = u.d + 115 16 $v.\pi = u$ ENQUEUE(Q, v) $\parallel v$ is now on the frontier 17u.color = BLACK// u is now behind the frontier 18

Q holds discovered by unfinished vertices (gray vertices).

i) Dequeue \boldsymbol{v} , ii) Enqueue \boldsymbol{v} 's undiscovered neighbors (None), make then gray, and update their d and π , iii) Make \boldsymbol{v} black

BFS(G, s)

- 1 for each vertex $u \in G. V \{s\}$
- 2 u.color = WHITE
- 3 $u.d = \infty$
- 4 $u.\pi = \text{NIL}$
- 5 s.color = GRAY
- $6 \quad s.d = 0$
- 7 $s.\pi = \text{NIL}$
- 8 $Q = \emptyset$
- 9 ENQUEUE(Q, s)
- 10 while $Q \neq \emptyset$
- 11 u = DEQUEUE(Q)
- for each vertex v in G.Adj[u] // search the neighbors of u 12 **if** v.color == WHITE// is v being discovered now? 13 v.color = GRAY14 v.d = u.d + 115 16 $v.\pi = u$ ENQUEUE(Q, v) $\parallel v$ is now on the frontier 17u.color = BLACK// *u* is now behind the frontier 18

Q holds discovered by unfinished vertices (gray vertices).

i) Dequeue t, ii) Enqueue t's undiscovered neighbors (None), make then gray, and update their d and π , iii) Make t black

BFS(G, s)

- 1 for each vertex $u \in G. V \{s\}$
- 2 u.color = WHITE
- 3 $u.d = \infty$
- 4 $u.\pi = \text{NIL}$
- 5 s.color = GRAY
- $6 \ s.d = 0$
- 7 $s.\pi = \text{NIL}$
- 8 $Q = \emptyset$
- 9 ENQUEUE(Q, s)
- 10 while $Q \neq \emptyset$

```
11 u = \text{DEQUEUE}(Q)
```

```
for each vertex v in G.Adj[u] // search the neighbors of u
12
            if v.color == WHITE
                                       // is v being discovered now?
13
                 v.color = GRAY
14
                 v.d = u.d + 1
15
16
                 v.\pi = u
                 ENQUEUE(Q, v)
                                       \parallel v is now on the frontier
17
        u.color = BLACK
                                       // u is now behind the frontier
18
```

Q holds discovered by unfinished vertices (gray vertices).

i) Dequeue w, ii) Enqueue w's undiscovered neighbors $\{x, z\}$, make then gray, and update their d and π , iii) Make w black

BFS(G, s)

- 1 for each vertex $u \in G. V \{s\}$
- 2 u.color = WHITE
- 3 $u.d = \infty$
- 4 $u.\pi = \text{NIL}$
- 5 s.color = GRAY
- $6 \quad s.d = 0$
- 7 $s.\pi = \text{NIL}$
- 8 $Q = \emptyset$
- 9 ENQUEUE(Q, s)
- 10 while $Q \neq \emptyset$

```
11 u = \text{DEQUEUE}(Q)
```

```
for each vertex v in G.Adj[u] // search the neighbors of u
12
            if v.color == WHITE
                                       // is v being discovered now?
13
                 v.color = GRAY
14
                 v.d = u.d + 1
15
16
                 v.\pi = u
                 ENQUEUE(Q, v)
                                       \parallel v is now on the frontier
17
        u.color = BLACK
                                       // u is now behind the frontier
18
```

Q holds discovered by unfinished vertices (gray vertices).

i) Dequeue y, ii) Enqueue y's undiscovered neighbors (None), make then gray, and update their d and π , iii) Make y black

BFS(G, s)

- for each vertex $u \in G.V \{s\}$
- u.color = WHITE2
- $u.d = \infty$ 3
- $u.\pi = \text{NIL}$ 4
- s.color = GRAY5
- s.d = 06
- $s.\pi = \text{NIL}$ 7
- $O = \emptyset$ 8

18

- ENQUEUE(Q, s) 9
- while $Q \neq \emptyset$ 10
- u = DEQUEUE(Q)11
- for each vertex v in G.Adj[u] // search the neighbors of u 12 **if** v.color == WHITE13 v.color = GRAY14 v.d = u.d + 115 16 $v.\pi = u$ ENQUEUE(Q, v)17
 - u.color = BLACK

// is v being discovered now?

 $\parallel v$ is now on the frontier // *u* is now behind the frontier

Q holds discovered by unfinished vertices (gray vertices).

i) Dequeue \mathbf{x} , ii) Enqueue \mathbf{x} 's undiscovered neighbors (None), make then gray, and update their d and π , iii) Make x black

BFS(G, s)

- for each vertex $u \in G.V \{s\}$
- u.color = WHITE2
- $u.d = \infty$ 3
- $u.\pi = \text{NIL}$ 4
- s.color = GRAY5
- s.d = 06
- $s.\pi = \text{NIL}$ 7
- $O = \emptyset$ 8

112

117

11,8

- ENQUEUE(Q, s) 9
- while $Q \neq \emptyset$ 10

```
u = \text{DEQUEUE}(Q)
111
```

```
for each vertex v in G.Adj[u] // search the neighbors of u
    if v.color == WHITE
```

$$v.color = GRAY$$

$$v.d = u.d + 1$$

$$v.\pi = u$$

$$ENQUEUE(Q, v) \qquad //$$

$$u.color = BLACK, y, y \qquad //$$

```
// is v being discovered now?
```

v is now on the frontier *II u* is now behind the frontier

Q holds discovered by unfinished vertices (gray vertices).

i) Dequeue z, ii) Enqueue z's undiscovered neighbors (None), make then gray, and update their d and π , iii) Make z black

BFS(G, s)

- 1 for each vertex $u \in G.V \{s\}$
- 2 u.color = WHITE
- 3 $u.d = \infty$
- 4 $u.\pi = \text{NIL}$
- 5 s.color = GRAY
- $6 \quad s.d = 0$
- 7 $s.\pi = \text{NIL}$
- 8 $Q = \emptyset$
- 9 ENQUEUE(Q, s)
- 10 while $Q \neq \emptyset$
- 11 u = DEQUEUE(Q)
- for each vertex v in G.Adj[u] // search the neighbors of u 12 **if** v.color == WHITE// is v being discovered now? 13 v.color = GRAY14 v.d = u.d + 115 $v.\pi = u$ 16 ENQUEUE(Q, v) $\parallel v$ is now on the frontier 17 u.color = BLACK// *u* is now behind the frontier 18

BFS tree formed by blue edges

BFS Time Complexity

BFS(G, s)

2

3

10

11

12

13

14

15

16

17

18

1 for each vertex $u \in G.V - \{s\}$ u.color = WHITE

u = DEQUEUE(Q)

u.color = BLACK

for each vertex v in G.Adj[u]

if *v*.*color* == WHITE

 $v.\pi = u$

v.color = GRAY

ENQUEUE(Q, v)

v.d = u.d + 1

 \parallel search the neighbors of u

 $\parallel v$ is now on the frontier

// *u* is now behind the frontier

 \parallel is v being discovered now?

 $u.d = \infty$

ENQUEUE(Q, s)

while $Q \neq \emptyset$

s.d = 0 $s.\pi = \text{NIL}$

 $Q = \emptyset$

 $u.\pi = \text{NIL}$ s.color = GRAY

- Initialization (lines 1-4): $\Theta(V)$
- Lines 5-9: $\Theta(1)$
- Aggregate analysis for lines 10-18
 - Each vertex is enqueued and dequeued at most once
 - Line 11, 14-16 take $\Theta(V)$ time
 - Adjacency list of each vertex is scanned at most once.
 - Line 12-13 take $\Theta(E)$ time
- With adjacency list, running time $\Theta(V + E)$
- With adjacency matrix, running time $\Theta(V^2)$

- Explore edges out of the most recently discovered vertex v.
- When all edges of v have been explored, backtrack to explore other edges leaving the vertex from which v was discovered (its predecessor).
- "Search as deep as possible first."
- Continue until all vertices reachable from the original source are discovered.
- If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.

- <u>Input</u>: G = (V, E), directed or undirected. No source vertex!
- <u>Output:</u>
 - 2 timestamps on each vertex. Integers between 1 and 2|V|
 - v.d = discovery time (v turns from white to gray)
 - v.f = finishing time (v turns from gray to black)
 - $v.\pi$: predecessor of v = u, such that v was discovered during the scan of u's adjacency list
- Uses the same coloring scheme for vertices as BFS

DFS(G)

- 1. for each vertex $u \in G.V$
- 2. u.color = white
- 3. $u.\pi = \text{NIL}$
- 4. time = 0
- 5. for each vertex $u \in G.V$
- 6. **if** u. color == white
- 7. DFS-Visit(G, u)

Uses a global timestamp *time*.

DFS-Visit(*G*, *u*)

2.

3.

4.

5.

6.

7.

8.

1

1. u.color = GRAY //white vertex *u* has been discovered

$$time = time + 1$$

$$u.d = time$$

for each $v \in G.Adj[u]$ // explore each edge (u, v)

 $v \cdot \pi = u$

- DFS-Visit(G, v)
- u.color = BLACK // Blacken u; it is finished

9.
$$u.f = time$$

$$0. \quad time = time + 1$$

DFS-Visit(G, u)

- 1. u.color = GRAY //white vertex *u* has been discovered
- 2. time = time + 1
- 3. u.d = time
- 4. for each $v \in G.Adj[u]$ // explore each edge (u, v)
- 5. **if** v.color = WHITE
- 6. $v.\pi = u$
 - DFS-Visit(G, v)
- 8. u.color = BLACK // Blacken u; it is finished
- 9. u.f = time

7.

10. time = time + 1

(Courtesy of Prof. Jim Anderson)

DFS-Visit(G, u)

- 1. u.color = GRAY //white vertex *u* has been discovered
- 2. time = time + 1
- 3. u.d = time
- 4. for each $v \in G.Adj[u]$ // explore each edge (u, v)
- 5. **if** v.color = WHITE
- 6. $v.\pi = u$
 - DFS-Visit(G, v)
- 8. u.color = BLACK // Blacken u; it is finished
- 9. u.f = time

7.

DFS-Visit(G, u)

- 1. u.color = GRAY //white vertex *u* has been discovered
- 2. time = time + 1
- 3. u.d = time
- 4. for each $v \in G.Adj[u]$ // explore each edge (u, v)
- 5. **if** v.color = WHITE
- 6. $v.\pi = u$
 - DFS-Visit(G, v)
- 8. u.color = BLACK // Blacken u; it is finished
- 9. u.f = time

7.

DFS-Visit(G, u)

- 1. u.color = GRAY //white vertex *u* has been discovered
- 2. time = time + 1
- 3. u.d = time
- 4. for each $v \in G.Adj[u]$ // explore each edge (u, v)
- 5. **if** v.color = WHITE
- 6. $v.\pi = u$
 - DFS-Visit(G, v)
- 8. u.color = BLACK // Blacken u; it is finished
- 9. u.f = time

7.

DFS-Visit(G, u)

- 1. u.color = GRAY //white vertex *u* has been discovered
- 2. time = time + 1
- 3. u.d = time
- 4. for each $v \in G.Adj[u]$ // explore each edge (u, v)
- 5. **if** v.color = WHITE
- $6. \qquad \nu.\pi = u$
 - DFS-Visit(G, v)
- 8. u.color = BLACK // Blacken u; it is finished
- 9. u.f = time

7.

10. time = time + 1

<u>Back Edge</u>: (x, v) is a back edge if it is explored when both x and v are grey. (x is discovered by a path from v, i.e., v is an ancestor of x)

DFS-Visit(G, u)

- 1. u.color = GRAY //white vertex *u* has been discovered
- 2. time = time + 1
- 3. u.d = time
- 4. for each $v \in G.Adj[u]$ // explore each edge (u, v)
- 5. **if** v.color = WHITE
- 6. $v.\pi = u$
 - DFS-Visit(G, v)
- 8. u.color = BLACK // Blacken u; it is finished
- 9. u.f = time

7.

DFS-Visit(G, u)

- 1. u.color = GRAY //white vertex *u* has been discovered
- 2. time = time + 1
- 3. u.d = time
- 4. for each $v \in G.Adj[u]$ // explore each edge (u, v)
- 5. **if** v.color = WHITE
- 6. $v.\pi = u$
 - DFS-Visit(G, v)
- 8. u.color = BLACK // Blacken u; it is finished
- 9. u.f = time

7.

DFS-Visit(G, u)

- 1. u.color = GRAY //white vertex *u* has been discovered
- 2. time = time + 1
- 3. u.d = time
- 4. for each $v \in G.Adj[u]$ // explore each edge (u, v)
- 5. **if** v.color = WHITE
- 6. $v.\pi = u$
 - DFS-Visit(G, v)
- 8. u.color = BLACK // Blacken u; it is finished
- 9. u.f = time

7.

DFS-Visit(G, u)

- 1. u.color = GRAY //white vertex *u* has been discovered
- 2. time = time + 1
- 3. u.d = time
- 4. for each $v \in G.Adj[u]$ // explore each edge (u, v)
- 5. **if** v.color = WHITE
- $6. \qquad \nu.\pi = u$
 - DFS-Visit(G, v)
- 8. u.color = BLACK // Blacken u; it is finished
- 9. u.f = time

7.

10. time = time + 1

Forward Edge: (u, x) is a forward edge if x is discovered by a ">1"-length path from u. (x is a descendant of u)

DFS-Visit(G, u)

- 1. u.color = GRAY //white vertex *u* has been discovered
- 2. time = time + 1
- 3. u.d = time
- 4. for each $v \in G.Adj[u]$ // explore each edge (u, v)
- 5. **if** v.color = WHITE
- 6. $v.\pi = u$
 - DFS-Visit(G, v)
- 8. u.color = BLACK // Blacken u; it is finished
- 9. u.f = time

7.

DFS-Visit(G, u)

- 1. u.color = GRAY //white vertex *u* has been discovered
- 2. time = time + 1
- 3. u.d = time
- 4. for each $v \in G.Adj[u]$ // explore each edge (u, v)
- 5. **if** v.color = WHITE
- 6. $v.\pi = u$
 - DFS-Visit(G, v)
- 8. u.color = BLACK // Blacken u; it is finished
- 9. u.f = time

7.

DFS-Visit(G, u)

- 1. u.color = GRAY //white vertex *u* has been discovered
- 2. time = time + 1
- 3. u.d = time
- 4. for each $v \in G.Adj[u]$ // explore each edge (u, v)
- 5. **if** v.color = WHITE
- $6. \qquad \nu.\pi = u$
 - DFS-Visit(G, v)
- 8. u.color = BLACK // Blacken u; it is finished
- 9. u.f = time

7.

10. time = time + 1

<u>**Cross Edge**</u>: (w, y) is a back edge if no ancestor descendant relationships between them.

DFS-Visit(G, u)

- 1. u.color = GRAY //white vertex *u* has been discovered
- 2. time = time + 1
- 3. u.d = time
- 4. for each $v \in G.Adj[u]$ // explore each edge (u, v)
- 5. **if** v.color = WHITE
- 6. $v.\pi = u$
 - DFS-Visit(G, v)
- 8. u.color = BLACK // Blacken u; it is finished
- 9. u.f = time

7.

DFS-Visit(G, u)

- 1. u.color = GRAY //white vertex *u* has been discovered
- 2. time = time + 1
- 3. u.d = time
- 4. for each $v \in G.Adj[u]$ // explore each edge (u, v)
- 5. **if** v.color = WHITE
- 6. $v.\pi = u$
 - DFS-Visit(G, v)
- 8. u.color = BLACK // Blacken u; it is finished
- 9. u.f = time

7.

DFS-Visit(G, u)

- 1. u.color = GRAY //white vertex *u* has been discovered
- 2. time = time + 1
- 3. u.d = time
- 4. for each $v \in G.Adj[u]$ // explore each edge (u, v)
- 5. **if** v.color = WHITE
- $6. \qquad \nu.\pi = u$
 - DFS-Visit(G, v)
- 8. u.color = BLACK // Blacken u; it is finished
- 9. u.f = time

7.

10. time = time + 1

Self loops are considered as back edge

DFS-Visit(G, u)

- 1. u.color = GRAY //white vertex *u* has been discovered
- 2. time = time + 1
- 3. u.d = time
- 4. for each $v \in G.Adj[u]$ // explore each edge (u, v)
- 5. **if** v.color = WHITE
- 6. $v.\pi = u$
 - DFS-Visit(G, v)
- 8. u.color = BLACK // Blacken u; it is finished
- 9. u.f = time

7.

Depth-First Forest

- DFS creates a forest (subgraph induced by the red edges in the example)
 - Forest: An acyclic graph G that may be disconnected. (G has multiple trees)
- Tree edge: Edges in the forest
 - Edge that discovers new vertices
- Recall:
 - Back edge: edge from a descendant to an ancestor
 - Forward edge: edge from ancestor to a proper descendant

Depth-First Forest

- Recall:
 - <u>Back edge</u>: edge from a descendant to an ancestor
 - Forward edge: edge from ancestor to a proper descendant
 - <u>Cross edge</u>: no ancestor descendant relationship
- Vocabulary:
 - End-points of tree edges are predecessors and successors (e.g., v is processor of y)
 - u is an ancestor of v is we can go to v from u using tree edges only
 - u is a proper ancestor of v if we can go to v from u using at least two tree edges only

DFS(G)

1. u.color = GRAY //white vertex *u* has been discovered

```
2. \quad time = time + 1
```

```
3. u.d = time
```

5.

6.

7.

```
4. for each v \in G.Adj[u] // explore each edge (u, v)
```

```
if v.color = WHITE
```

 $v.\pi = u$

```
DFS-Visit(G, v)
```

8. u.color = BLACK // Blacken u; it is finished

9. u.f = time

```
10. time = time + 1
```

DFS(G) lines 1-3 & 5-6 take Θ(V) time, line
 4 takes Θ(1) time

• DFS-Visit is called once for each white vertex $u \in V$ when it's painted gray the first time. Lines 3-6 of DFS-Visit is executed |Adj[u]| times. The total cost of executing DFS-Visit is $\sum_{v \in V} |Adj[u]| = \Theta(E)$

• Total running time of DFS is $\Theta(V + E)$

Parentheses Theorem

Theorem 20.7

For all u, v, exactly one of the following holds:

- 1. The intervals [u.d, u.f] and [v.d, v.f] are entirely disjoint and neither u nor v is a descendant of the other.
- 2. [v.d, v.f] is contained within [u.d,u,f] and v is a descendant of u.
- 3. [u.d, u.f] is contained within [v.d, v.f] and u is a descendant of v.
- u.d < v.d < u.f < v.f is impossible
- Like parentheses:
 - OK:()[]([])[()]
 - Not OK: ([)][(])

Parentheses Theorem

(u (v (y (x x) y) v u) (w (z z) w)

Topological Sorting

- <u>Directed Acyclic Graph (DAG</u>: directed graph with no cycle
 - Can be used to model dependency relationship
- <u>Topological Sort</u>: Ordering of vertices of a DAG so that for any edge (u, v), u appears before v in the ordering

Topological Sorting

• <u>Topological Sort</u>: Ordering of vertices of a DAG so that for any edge

(u, v), u appears before v in the ordering

TOPOLOGICAL-SORT(G)

1 call DFS(G) to compute finish times *v*.*f* for each vertex *v*

- 2 as each vertex is finished, insert it onto the front of a linked list
- 3 return the linked list of vertices

Thank You!