COMP 550
Algorithm and Analysis

Elementary Graph
Algorithms

Based on CLRS Sec. 20 and
Appendix B.4

Graph: Terminology

* A Graph G = (V,E) Example:

« V = Set of vertices (or nodes) 1 2

« E = Set of edges < (V x V) / \3
* V ={vy, vy, .., v} (vertices are typically 5 4

denoted as v;)
« V =1{1,2,3,4,5}
 Number of vertices, |V| =n
* [V| =5

E={e; = (vi,vy), ... em = vy, v} e E = {(1,2),(1,5),(2.3), (2,4),

« Number of edges, |[E| =m (2,5),(3,4), (4,5)}

- |E| = 0(IVI?) * |E[=7

Graph: Terminology

» Types of graphs
* Undirected: edge (u,v) = (v,u)
 CLRS definition forbids self loop.
» Directed (digraph): (u,v) is edge from u to v.

« Self loop possible. (Simple digraph has no self
loop)

« Weighted: each edge has an associated weight|

given by a weight functionw : E —> R
« Dense: |E| = |V|?
» Sparse: |E| <« | V|?

e v

Undirected graph Directed graph

Weigh‘red Weighted
undirected graph directed graph

Graph: Terminology

* Degree of a vertex deg(v): Number of edges

incident to v @"G

* For directed graph, in-degree and out-degree of a e‘@

vertex v are the number of edges to and from v.

. . Undirected graph Directed graph
* If (u,v) € E, then vertex v is adjacent to
vertex u. Degree of cis 3 In-Degree of cis 1
» Adjacency relationship is: Out-degree of cis 2

« Symmetric if & is undirected

* Not necessarily so if G is directed

Graph: Terminology

 Path:
A sequence of vertices (vy,v,,...,vx) Where vVl <i<k -1, (v;,v;;1) EE

: Number of edges in the path.

 Path is if no vertex is repeated. 1 0
« Cycle / \ 3
 Path that ends back at starting nod 5 4 /
* G is connected: .
* Thereisa . * (1,2,3) is a path
- |E|>|V|-1.
* Furthermore, if |E| = |V| -1, then G is a tree. * (1,2,5,1) is a cycle

 Other definitions in Appendix B (B.4 and B.5) as needed

Applications

* Everywhere!
* Road or communication network
* Social media
* Protein-protein interactions

* etfc.

Graph Representations

* Two standard ways

« Adjacency Lists
a—b a| TP 1d 1c |/ (a)—b) a| TP
. b {c |/ ' b c |/
e‘@ c 1d | T—]a =b|/ 0‘0 C d |/
d 1a | T—|c |/ d|
* Adjacency Matrix
1 2 1 2 3 4 1 2 1 2 3
P tori AV LF S
DOt E I R G tE
D, di1o01o0 3 4 4000

O""‘OHA

Adjacency Lists

* Consists of an array Adj of |V| lists

* One list per vertex

* For u € V, Adj[u] consists of all vertices adjacent to u

(a)—b) q 1 b 1 d {c |/ (@—b) a {b

" b {a {c |/ ' b c |/

e‘@ C 1d | T—]a 1b |/ G‘@ C d |/
d 1a | T—|c |/ d|

If weighted, store weights also in adjacency lists

Adjacency Lists

* For directed graphs:
« Sum of lengths of all adj. lists is

Y.vey out-degree(v) = |E|

 Total storage: O(V + E)

* For undirected graphs:

« Sum of lengths of all adj. lists is

Yvev degree(v) = 2|E|

 Total storage: O(V + E)

Adjacency Lists

* Pros
» Space-efficient, when a graph is sparse.

* Can be modified to support many graph variants.

* Cons

 Determining if an edge (u,v) €E is not efficient.
 Have to search in u's adjacency list in ®(degree(u)) time.

« O(V) in the worst case.

Adjacency Matrix
o |[V| x |V]| matrix A

* Number vertices from 1 to |V| in some arbitrary manner

o 1 if (i,j)eE

i, jl=a = _

All 1=2, {O otherwise
1 2 1 2 12 3 4
@"‘9 13%5’14 0'0 110 1 1 1
200 10

21010

N 31101 N 30001
(—d, 11610 {o—d), 4000 0

Adjacency Matrix
* Space: O(V?)
* Not memory efficient for large graphs
* Time: to list all vertices adjacent to u: (V)
* Time: to determine if (u,v) € E: ©(1)

* Can store weights instead of bits for weighted graph.

Graph Search

* Searching a graph:
 Systematically follow the edges of a graph to visit the vertices of
the graph

 Used to discover the structure of a graph

« Standard graph-searching algorithms
* Breadth-first Search (BFS)
* Depth-first Search (DFS)

Breadth-First Search (BFS)

* Given a graph G = (V,E) and a source vertex s, want to discover vertices
reachable from s and their shortest path distance from s

« Input: Graph G = (V,E),either directed or undirected, and a source
vertex s e V

 Output:

« v.d =distance (smallest # of edges, or shortest path) from s to v, for all
v €V.v.d = wif vis not reachable from s.

* v.1 = u such that (u,v) is last edge on shortest path s~
* u is v's predecessor.

* Builds breadth-first tree with root s that contains all reachable vertices

Breadth-First Search (BFS)

« We want our search algorithm to produce shortest distance from s to v

for all v.

e Tdea:

* Notation: Shortest-path distance from s to v is §(s,v)

« If 6(s,v) = x > 1, then there is a vertex u with §(s,u) = x — 1

« We want to discover v via u ‘ x—1

[
>
»
>

<
«

X

Breadth-First Search (BFS)

 Expands the frontier between discovered and undiscovered

vertices uniformly across the breadth of the frontier. 7 Tz
+ A vertex is "discovered” the first time it is encountered during the 2 ’
search. 2 S
« A vertex is if all vertices adjacent to it have been %72)
discovered. 2\
* Colors the vertices to keep track of progress.
* White - Undiscovered. ® Finished

- Discovered but not finished.
 Black - Finished.

« Colors are basically different numbers/characters O Undiscovered

* Colors are also not required

Breadth-First Search (BFS)

BFES(G,s)

1 foreach vertexu € G.V — {5}

2 u.color = WHITE

3 u.d = oo

4 u.m = NIL

5 s.color = GRAY

6 s.d=20

7 S§.m = NIL

8 Q=10

13 iﬁggg“i(%’s) i) Dequeue s, ii) Enqueue s's undiscovered
1 u = DEQUEUE(Q) neighbors {r, v,u}, make then gray, and
12 for each vertex v in G.Adj[u] // search the neighbors of u update their d and , iii) Make s black
13 if v.color == WHITE // is v being discovered now?

14 v.color = GRAY

15 v.d =u.d+1

16 V. = U

17 ENQUEUE(Q, v) // v is now on the frontier

18 u.color = BLACK // u is now behind the frontier

Q holds discovered by unfinished vertices (gray

vertices).
COMP550@UNC 17

Breadth-First Search (BFS)

BFES(G,s)

1 foreach vertexu € G.V — {5}

2 u.color = WHITE

3 u.d = oo

4 u.m = NIL

5 s.color = GRAY

6 s.d=20 v

7 s.m = NIL 1

8 Q=10

13 EESE’EQU;(%’S) i) Dequeue 1, ii) Enqueue 7's undiscovered
1 u = DEQUEUE(Q) neighbors {t, w}, make then gray, and
12 for each vertex v in G.Adj[u] // search the neighbors of u updaTe their d and T, iii) Make 1 black
13 if v.color == WHITE // is v being discovered now?

14 v.color = GRAY

15 v.d =u.d+1

16 VT = U

17 ENQUEUE(Q, v) // v is now on the frontier

18 u.color = BLACK // u is now behind the frontier

Q holds discovered by unfinished vertices (gray

vertices).
COMP550@UNC 18

Breadth-First Search (BFS)

BFES(G,s)

1 foreach vertexu € G.V — {5}

2 u.color = WHITE

3 u.d = oo

4 u.m = NIL (c)

5 s.color = GRAY

6 s.d =20 Q|u|v|t|w|

7 S.m = NIL 7 I 12 2

8 Q=10

13 EESE’EQU;(%’S) i) Dequeue u, ii) Enqueue u's undiscovered
1 u = DEQUEUE(Q) neighbors {y}, make then gray, and

12 for each vertex v in G.Adj[u] // search the neighbors of u updaTe their d and T, iii) Make u black
13 if v.color == WHITE // is v being discovered now?

14 v.color = GRAY

15 v.d =u.d+1

16 VT = U

17 ENQUEUE(Q, v) // v is now on the frontier

18 u.color = BLACK // u is now behind the frontier

Q holds discovered by unfinished vertices (gray

vertices).

COMP550@UNC 19

Breadth-First Search (BFS)

BFES(G,s)

1 foreach vertexu € G.V — {5}

2 u.color = WHITE

3 u.d = oo

4 u.m = NIL

5 s.color = GRAY |

6 s.d=20 wiy

7 s.m = NIL 2 2

8 Q=10

13 EESE’EQU;(%’S) i) Dequeue v, ii) Enqueue v's undiscovered
1 u = DEQUEUE(Q) neighbors (None), make then gray, and
12 for each vertex v in G.Adj[u] // search the neighbors of u upda're their d and T, iii) Make v black
13 if v.color == WHITE // is v being discovered now?

14 v.color = GRAY

15 v.d =u.d+1

16 V. = U

17 ENQUEUE(Q, v) // v is now on the frontier

18 u.color = BLACK // u is now behind the frontier

Q holds discovered by unfinished vertices (gray

vertices).
COMP550@UNC 20

Breadth-First Search (BFS)

BFES(G,s)

1 foreach vertexu € G.V — {5}
2 u.color = WHITE

3 u.d = oo

4 u.m = NIL

5 s.color = GRAY
6

7

8

9

s.d =0
§.T = NIL
Q=40

ENQUEUE(Q, s) . .. , .
10 while O # @ i) Dequeue t, ii) Enqueue t's undiscovered

1 u = DEQUEUE(Q) neighbors (None), make then gray, and
12 for each vertex v in G.Adj[u] // search the neighbors of u updaTe their d and T, iii) Make t black
13 if v.color == WHITE // is v being discovered now?
14 v.color = GRAY
15 v.d =u.d+1
16 V. = U
17 ENQUEUE(Q, v) // v is now on the frontier
18 u.color = BLACK // u is now behind the frontier

Q holds discovered by unfinished vertices (gray y

vertices). 2

COMP550@UNC 21

Breadth-First Searc!'\ (?FS)

BFES(G,s)

1 foreach vertexu € G.V — {5}

2 u.color = WHITE

3 u.d = oo

4 u.m = NIL

5 s.color = GRAY

6 s.d=20 Y

7 s.m = NIL 2

8 Q=10

13 EESE’EQU;(%’S) i) Dequeue w;, ii) Enqueue w's undiscovered
1 u = DEQUEUE(Q) neighbors {x, z}, make then gray, and

12 for each vertex v in G.Adj[u] // search the neighbors of u upda’re their d and T, iii) Make w black
13 if v.color == WHITE // is v being discovered now?

14 v.color = GRAY

15 v.d =u.d+1

16 VT = U

17 ENQUEUE(Q, v) // v is now on the frontier

18 u.color = BLACK // u is now behind the frontier

Q holds discovered by unfinished vertices (gray

vertices).
COMP550@UNC 22

Breadth-First Searcl:u (BFS)

BFES(G,s)

1 foreach vertexu € G.V — {5}
2 u.color = WHITE

3 u.d = oo

4 u.m = NIL

5 s.color = GRAY
6

7

8

9

s.d =0
§.T = NIL
Q=40

ENQUEUE(Q, s) c . ' .
10 while Q % 0 i) Dequeue y, ii) Enqueue y's undiscovered

1 u = DEQUEUE(Q) neighbors (None), make then gray, and
12 for each vertex v in G.Adj[u] // search the neighbors of u upda’re their d and 7, iii) Make y black
13 if v.color == WHITE // is v being discovered now?

14 v.color = GRAY

15 v.d =u.d+1

16 V. = U

17 ENQUEUE(Q, v) // v is now on the frontier

18 u.color = BLACK // u is now behind the frontier

Q holds discovered by unfinished vertices (gray

vertices).
COMP550@UNC 23

Breadth-First Search (BFS)

BFES(G,s)

1 foreach vertexu € G.V — {5}
2 u.color = WHITE

3 u.d = oo

4 u.m = NIL

5 s.color = GRAY
6

7

8

9

s.d =0
§.T = NIL
Q=20
ENQUEUE(Q, s)
10 while O # 0@
11 u = DEQUEUE(Q)

i) Dequeue x, ii) Enqueue x's undiscovered
neighbors (None), make then gray, and

12 for each vertex v in G.Adj[u] // search the neighbors of u upda’re their d and T, iii) Make x black
13 if v.color == WHITE // is v being discovered now?

14 v.color = GRAY

15 v.d =u.d+1

16 VT = U

17 ENQUEUE(Q, v) // v is now on the frontier

18 u.color = BLACK // u is now behind the frontier

Q holds discovered by unfinished vertices (gray

vertices).
COMP550@UNC 24

BFES(G,s)

I
2
3
4
5
6
7
8
9

10
111
112
113
14

Q holds discovered by unfinished vertices (gray

vertices).

Breadth-First Search (BFS)

for each vertex u € G.V — {s}
u.color = WHITE
u.d = oo
u.m = NIL

s.color = GRAY

s.d =0

§.m = NIL

Q=90

ENQUEUE(Q, s) ; ..) .
while O + @ i) Dequeue z, ii) Enqueue z's undiscovered

u = DEQUEUE(Q) neighbors (None), make then gray, and

for each vertex v in G.Adj[u] // search the neighbors of u updaTe their d and 7, iii) Make z black
if v.color == WHITE // is v being discovered now?
v.color = GRAY
v.d =u.d+1
VT = U
ENQUEUE(Q, v) // v is now on the frontier

u.color = BLACK _ A/ u.is,now behind the, frontier

COMP550@UNC 25

Breadth-First Search (BFS)

BFES(G,s)

1 foreach vertexu € G.V — {5}
2 u.color = WHITE
3 u.d = oo

4 u.m = NIL

5 s.color = GRAY

6 s.d=20

7 §.m = NIL

8 Q=10

9 ENQUEUE(Q,s)

10 while O # 0@

11 u = DEQUEUE(Q)

12 for each vertex v in G.Adjlu] // search the neighbors of u

13 if v.color == WHITE // is v being discovered now?

14 v.color = GRAY

15 v.d =u.d+1

16 v = U BFS tree formed by blue edges
17 ENQUEUE(Q, v) // v is now on the frontier

18 u.color = BLACK // u is now behind the frontier

Q holds discovered by unfinished vertices (gray

vertices).
COMP550@UNC 26

BFS Time Complexity

 Initialization (lines 1-4): (V)

BFS(G,s) . i

1 for each vertex u € G.V — {s} * Lines 5-9: G)(l)

2 u.color = WHITE

2 wd=oo Aggregate analysis for lines 10-18

4 u.7 = NIL

> Seolor = GRAY - Each vertex is enqueued and dequeued at most
7 §.m = NIL once

8 Q=10

9 ENQUEUE(Q,s) S - I

o while 0 £ Line 11, 14-16 take O(V) time

11 u = DEQUEUE(Q)

12 for cach vertex v in G.Adj[u] // search the neighbors of u AdJacency list of each vertex is scanned at most
13 if v.color == WHITE // is v being discovered now? once

14 v.color = GRAY '

) :j-fr:*’;'d“ Line 12-13 take O(E) time

17 ENQUEUE(Q, v) // v is now on the frontier

18 u.color = BLACK // u is now behind the frontier © WlTh adJaCency ||ST, r‘unnlng T|me @(V + E)

« With adjacency matrix, running time (V%)

Depth-First Search (DFS)

« Explore edges out of the most recently discovered vertex v.

« When all edges of v have been explored, backtrack to explore other

edges leaving the vertex from which v was discovered (its predecessor).

« Continue until all vertices reachable from the original source are

discovered.

* If any undiscovered vertices remain, then one of them is chosen as a

new source and search is repeated from that source.

Depth-First Search (DFS)

* Input: G = (V,E), directed or undirected. No source vertex!

 Output:

« 2 timestamps on each vertex. Integers between 1 and 2|V

« v.d =discovery time (v tfurns from white to gray)

* v.f =finishing time (v turns from gray to black)

 v.7 : predecessor of v = u, such that v was discovered during the

scan of u's adjacency list

 Uses the same coloring scheme for vertices as BFS

Depth-First Search (DFS)

DFS(6)

1. for each vertexu e G.V
2. u. color = white

3. u.m = NIL

4. time=0

5. for each vertex u e G.V
6. if u.color == white

7. DFS-Visit(G,u)

Uses a global timestamp time.

DFS-Visit(G, u)

© ®©o N Ok wWhE

|
o

u.color = GRAY //white vertex u has been discovered
time =time + 1
u.d = time
for each v € G.Adj[u] // explore each edge (u, v)
if v.color = WHITE
v.t=u
DFS-Visit(G, v)
u.color = BLACK // Blacken u; it is finished
u.f=time
time =time + 1

Depth-First Search (DFS)

DFS-Visit(G, u)
u.color = GRAY //white vertex u has been discovered u Vv AVY
time = time + 1
u.d = time 1/
for cach v € G.Adj[u] // explore each edge (u,v)
if v.color = WHITE

VI=uU

DFS-Visit(G, v)
u.color = BLACK //Blacken u; 1t 1s finished
u.f=time X y z

time = time + 1

e S T AR A o e

[u—
=

(Courtesy of Prof. Jim Anderson)

Depth-First Search (DFS)

DFS-Visit(G, u)

u.color = GRAY //white vertex u has been discovered u Vv AVY
time = time + 1
u.d = time 1/

for cach v € G.Adj[u] // explore each edge (u,v)
if v.color = WHITE
VI=uU
DFS-Visit(G, v)
u.color = BLACK //Blacken u; 1t 1s finished
u.f=time X y z

time = time + 1

e S T AR A o e

[u—
=

Depth-First Search (DFS)

DFS-Visit(G, u)
u.color = GRAY //white vertex u has been discovered u Vv AVY
time = time + 1
u.d = time
for cach v € G.Adj[u] // explore each edge (u,v)
if v.color = WHITE

VI=uU

DFS-Visit(G, v)
u.color = BLACK //Blacken u; 1t 1s finished
u.f=time

e S T AR A o e

[u—
=

time = time + 1

Depth-First Search (DFS)

DFS-Visit(G, u)
u.color = GRAY //white vertex u has been discovered u Vv AVY
time = time + 1
u.d = time
for cach v € G.Adj[u] // explore each edge (u,v)
if v.color = WHITE

VI=uU

DFS-Visit(G, v)
u.color = BLACK //Blacken u; 1t 1s finished
u.f=time

e S T AR A o e

[u—
=

time = time + 1

Depth-First Search (DFS)

DFS-Visit(G, u)

e S T AR A o e

[u—
=

u.color = GRAY //white vertex u has been discovered
time = time + 1
u.d = time
for cach v € G.Adj[u] // explore each edge (u,v)
if v.color = WHITE
VI=uU
DFS-Visit(G, v)
u.color = BLACK // Blacken u: 1t1s finished
u.f=time

time = time + 1

X y Z

Back Edge: (x,v) is a back edge if it is

explored when both x and v are grey.
(x is discovered by a path from v, i.e.,
vis an ancestor of x)

Depth-First Search (DFS)

DFS-Visit(G, u)

time = time + 1
u.d = time
for cach v € G.Adj[u] // explore each edge (u,v)
if v.color = WHITE
VI=uU
DFS-Visit(G, v)
u.color = BLACK //Blacken u; 1t 1s finished
u.f=time

e S T AR A o e

[u—
=

time = time + 1

u.color = GRAY //white vertex u has been discovered

COMP550@UNC

36

Depth-First Search (DFS)

DFS-Visit(G, u)

time = time + 1
u.d = time
for cach v € G.Adj[u] // explore each edge (u,v)
if v.color = WHITE
VI=uU
DFS-Visit(G, v)
u.color = BLACK //Blacken u; 1t 1s finished
u.f=time

e S T AR A o e

[u—
=

time = time + 1

u.color = GRAY //white vertex u has been discovered

COMP550@UNC

37

Depth-First Search (DFS)

DFS-Visit(G, u)

time = time + 1
u.d = time
for cach v € G.Adj[u] // explore each edge (u,v)
if v.color = WHITE
VI=uU
DFS-Visit(G, v)
u.color = BLACK //Blacken u; 1t 1s finished
u.f=time

e S T AR A o e

[u—
=

time = time + 1

u.color = GRAY //white vertex u has been discovered

COMP550@UNC

38

Depth-First Search (DFS)

DFS-Visit(G, u)

e S T AR A o e

[u—
=

u.color = GRAY //white vertex u has been discovered
time = time + 1
u.d = time
for cach v € G.Adj[u] // explore each edge (u,v)
if v.color = WHITE
VI=uU
DFS-Visit(G, v)
u.color = BLACK //Blacken u; 1t 1s finished
u.f=time

time = time + 1

X y Z

Forward Edge: (u,x) is a forward edge

if x is discovered by a ">1"-length path
from u. (x is a descendant of u)

COMP550@UNC 39

Depth-First Search (DFS)

DFS-Visit(G, u)

time = time + 1
u.d = time
for cach v € G.Adj[u] // explore each edge (u,v)
if v.color = WHITE
VI=uU
DFS-Visit(G, v)
u.color = BLACK //Blacken u; 1t 1s finished
u.f=time

e S T AR A o e

[u—
=

time = time + 1

u.color = GRAY //white vertex u has been discovered

COMP550@UNC

40

Depth-First Search (DFS)

DFS-Visit(G, u)

time = time + 1
u.d = time
for cach v € G.Adj[u] // explore each edge (u,v)
if v.color = WHITE
VI=uU
DFS-Visit(G, v)
u.color = BLACK //Blacken u; 1t 1s finished
u.f=time

e S T AR A o e

[u—
=

time = time + 1

u.color = GRAY //white vertex u has been discovered

COMP550@UNC

41

Depth-First Search (DFS)

DFS-Visit(G, u)

e S T AR A o e

[u—
=

u.color = GRAY //white vertex u has been discovered
time = time + 1
u.d = time
for cach v € G.Adj[u] // explore each edge (u,v)
if v.color = WHITE
VI=uU
DFS-Visit(G, v)
u.color = BLACK //Blacken u; 1t 1s finished
u.f=time

time = time + 1

Cross Edge: (w,y) is a back edge if no

ancestor descendant relationships
between them.

COMP550@UNC 42

Depth-First Search (DFS)

DFS-Visit(G, u)

time = time + 1
u.d = time
for cach v € G.Adj[u] // explore each edge (u,v)
if v.color = WHITE
VI=uU
DFS-Visit(G, v)
u.color = BLACK //Blacken u; 1t 1s finished
u.f=time

e S T AR A o e

[u—
=

time = time + 1

u.color = GRAY //white vertex u has been discovered

COMP550@UNC

43

Depth-First Search (DFS)

DFS-Visit(G, u)
u.color = GRAY //white vertex u has been discovered
time = time + 1
u.d = time
for cach v € G.Adj[u] // explore each edge (u,v)
if v.color = WHITE
VI=uU
DFS-Visit(G, v)
u.color = BLACK //Blacken u; 1t 1s finished
u.f=time

e S T AR A o e

[u—
=

time = time + 1

COMP550@UNC 44

Depth-First Search (DFS)

DFS-Visit(G, u)
u.color = GRAY //white vertex u has been discovered
time = time + 1
u.d = time
for cach v € G.Adj[u] // explore each edge (u,v)
if v.color = WHITE
VI=uU
DFS-Visit(G, v)
u.color = BLACK //Blacken u; 1t 1s finished
u.f=time X y

time = time + 1

e S T AR A o e

[u—
=

Self loops are considered as back edge

COMP550@UNC 45

Depth-First Search (DFS)

DFS-Visit(G, u)
u.color = GRAY //white vertex u has been discovered
time = time + 1
u.d = time
for cach v € G.Adj[u] // explore each edge (u,v)
if v.color = WHITE
VI=uU
DFS-Visit(G, v)
u.color = BLACK //Blacken u; 1t 1s finished
u.f=time

e S T AR A o e

[u—
=

time = time + 1

COMP550@UNC 46

Depth-First Forest

* DFS creates a forest (subgraph induced by the
red edges in the example)

* Forest: An acyclic graph G that may be
disconnected. (G has multiple trees)

* Tree edge: Edges in the forest

« Edge that discovers new vertices

e Recall:

* Back edge: edge from a descendant to an ancestor

* Forward edge: edge from ancestor to a proper

descendant

Depth-First Forest

e Recall:

 Back edge: edge from a descendant to an ancestor

 Forward edge: edge from ancestor to a proper

descendant

* Cross edge: ho ancestor descendant relationship

« Vocabulary:
« End-points of tree edges are predecessors and successors (e.g., v is processor of y)
« wuis an ancestor of vis we can go to v from u using tree edges only

 uis aproper ancestor of v if we can go to v from u using at least two tree edges

only

Depth-First Search (DFS)

DFS(G)

1. for each vertexue G.V
2. u. color = white

3. u.m = NIL

4. time=20

5. for each vertexu € G.V
6. if u.color == white
7. DFS-Visit(G, u)

DFS-Visit(G, u)

= 0 X kW=

u.color = GRAY //white vertex u has been discovered
time = time + 1
u.d = time
for cach v € G. Adj[u] // explore each edge (u,v)
if v.color = WHITE
VT =u
DFS-Visit(G, v)
u.color = BLACK // Blacken u; 1t1s finished
u.f=time
time = time + 1

* DFS(G) lines 1-3 & 5-6 take O(V) time, line
4 takes 0(1) time

« DFS-Visit is called once for each white
vertex u € V when it's painted gray the
first time. Lines 3-6 of DFS-Visit is
executed |Adj[u]| times. The total cost of
executing DFS-Visit is > ,_,|Adj[u]| = O(E)

 Total running time of DFS is ®(V + E)

Parentheses Theorem

Theorem 20.7
For all u,v, exactly one of the following holds:

1. The intervals [u.d, u.f] and [v.d, v.f]are entirely disjoint and neither u
nor v is a descendant of the other.

2.[v.d, v.f]is contained within[u.d,u, f] and v is a descendant of wu.
3.[u.d, u.f]is contained within [v.d, v.f] and u is a descendant of v.

cu.d < v.d < u.f < v.fisimpossible

* Like parentheses:

- oK) IICINIO)]
* Not OK: ([)][(])

Parentheses Theorem

(Uvly(xx)y)vu) (w(zz)w)

COMP550@UNC

51

Topological Sorting

* Directed Acyclic Graph (DAG): directed graph with no cycle

* Can be used to model dependency relationship

* Topological Sort: Ordering of vertices of a DAG so that for any edge

(u,v), u appears before v in the ordering

u \' w

Topological Sorting

* Topological Sort: Ordering of vertices of a DAG so that for any edge

(u,v), u appears before v in the ordering

TOPOLOGICAL-SORT(G)

1 call DFS(G) to compute finish times v.f for each vertex v
2 as each vertex 1s finished, insert it onto the front of a linked list
3 return the linked list of vertices

11/16 (undershorts S) 17/18

Y

12/15 pa@ >
1/8
L
12/15

tie) 2/5 TIIB 11/16

shoes) 13/14

lfS 6,’? ”fS

13/14 9!1()

Thank You!

	Slide 1: COMP 550 Algorithm and Analysis Elementary Graph Algorithms Based on CLRS Sec. 20 and Appendix B.4
	Slide 2: Graph: Terminology
	Slide 3: Graph: Terminology
	Slide 4: Graph: Terminology
	Slide 5: Graph: Terminology
	Slide 6: Applications
	Slide 7: Graph Representations
	Slide 8: Adjacency Lists
	Slide 9: Adjacency Lists
	Slide 10: Adjacency Lists
	Slide 11: Adjacency Matrix
	Slide 12: Adjacency Matrix
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Breadth-First Search (BFS)
	Slide 18: Breadth-First Search (BFS)
	Slide 19: Breadth-First Search (BFS)
	Slide 20: Breadth-First Search (BFS)
	Slide 21: Breadth-First Search (BFS)
	Slide 22: Breadth-First Search (BFS)
	Slide 23: Breadth-First Search (BFS)
	Slide 24: Breadth-First Search (BFS)
	Slide 25: Breadth-First Search (BFS)
	Slide 26: Breadth-First Search (BFS)
	Slide 27: BFS Time Complexity
	Slide 28: Depth-First Search (DFS)
	Slide 29: Depth-First Search (DFS)
	Slide 30: Depth-First Search (DFS)
	Slide 31: Depth-First Search (DFS)
	Slide 32: Depth-First Search (DFS)
	Slide 33: Depth-First Search (DFS)
	Slide 34: Depth-First Search (DFS)
	Slide 35: Depth-First Search (DFS)
	Slide 36: Depth-First Search (DFS)
	Slide 37: Depth-First Search (DFS)
	Slide 38: Depth-First Search (DFS)
	Slide 39: Depth-First Search (DFS)
	Slide 40: Depth-First Search (DFS)
	Slide 41: Depth-First Search (DFS)
	Slide 42: Depth-First Search (DFS)
	Slide 43: Depth-First Search (DFS)
	Slide 44: Depth-First Search (DFS)
	Slide 45: Depth-First Search (DFS)
	Slide 46: Depth-First Search (DFS)
	Slide 47: Depth-First Forest
	Slide 48: Depth-First Forest
	Slide 49: Depth-First Search (DFS)
	Slide 50: Parentheses Theorem
	Slide 51: Parentheses Theorem
	Slide 52: Topological Sorting
	Slide 53: Topological Sorting
	Slide 54: Thank You!

