
COMP 550
Algorithm and Analysis

Elementary Graph
Algorithms

Based on CLRS Sec. 20 and
Appendix B.4

Graph: Terminology
• A Graph 𝐺 = (𝑉, 𝐸)

• V = Set of vertices (or nodes)

• E = Set of edges ⊆ (𝑉 × 𝑉)

• 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} (vertices are typically

denoted as 𝑣𝑖)

• Number of vertices, 𝑉 = 𝑛

• 𝐸 = 𝑒1 = 𝑣𝑖 , 𝑣𝑗 , … , 𝑒𝑚 = 𝑣𝑘 , 𝑣ℓ

• Number of edges, 𝐸 = 𝑚

• |𝐸| = 𝑂(𝑉 2)
COMP550@UNC 2

• 𝑉 = 1,2,3,4,5

• |𝑉| = 5

• 𝐸 = { 1,2 , 1,5 , 2,3 , 2,4 ,

2,5 , 3,4 , (4,5)}

• |𝐸| = 7

Example:

Graph: Terminology

COMP550@UNC 3

• Types of graphs

• Undirected: edge (𝑢, 𝑣) = (𝑣, 𝑢)

• CLRS definition forbids self loop.

• Directed (digraph): (𝑢, 𝑣) is edge from 𝑢 to v.

• Self loop possible. (Simple digraph has no self

loop)

• Weighted: each edge has an associated weight,

given by a weight function 𝑤 ∶ 𝐸 → 𝑹

• Dense: |𝐸|  𝑉 2

• Sparse: |E| << |V|2

a

dc

b

Undirected graph

a

dc

b

Directed graph

a

dc

b
3

1

5

2 3

Weighted
undirected graph

a

dc

b
3

1

5

2 3

Weighted
directed graph

Graph: Terminology

COMP550@UNC 4

• Degree of a vertex deg(𝑣): Number of edges

incident to 𝑣

• For directed graph, in-degree and out-degree of a

vertex 𝑣 are the number of edges to and from 𝑣.

• If (𝑢, 𝑣)  𝐸, then vertex 𝑣 is adjacent to

vertex u.

• Adjacency relationship is:

• Symmetric if G is undirected

• Not necessarily so if G is directed

a

dc

b

Undirected graph

a

dc

b

Directed graph

Degree of 𝑐 is 3 In-Degree of 𝑐 is 1

Out-degree of 𝑐 is 2

Graph: Terminology

COMP550@UNC 5

• Path:

• A sequence of vertices ⟨𝑣1, 𝑣2, … , 𝑣𝑘⟩ where ∀1 ≤ 𝑖 ≤ 𝑘 − 1, 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸

• Length of the path: Number of edges in the path.

• Path is simple if no vertex is repeated.

• Cycle

• Path that ends back at starting nod

• G is connected:
• There is a path between every pair of vertices.
• |E|  |V| – 1.
• Furthermore, if |E| = |V| – 1, then G is a tree.

• Other definitions in Appendix B (B.4 and B.5) as needed

• ⟨1,2,3⟩ is a path

• 1,2,5,1 is a cycle

Applications

COMP550@UNC 6

• Everywhere!

• Road or communication network

• Social media

• Protein-protein interactions

• etc.

• Two standard ways
• Adjacency Lists

• Adjacency Matrix

Graph Representations

COMP550@UNC 7

a

dc

b

a

b

c

d

b

a

d

d c

c

a b

a c

a

dc

b
1 2

3 4

1 2 3 4
1 0 1 1 1
2 1 0 1 0
3 1 1 0 1
4 1 0 1 0

a

b

c

d

b

c

d

d c a

dc

b

a

dc

b
1 2

3 4

1 2 3 4
1 0 1 1 1
2 0 0 1 0
3 0 0 0 1
4 0 0 0 0

Adjacency Lists

COMP550@UNC 8

• Consists of an array 𝐴𝑑𝑗 of |𝑉| lists

• One list per vertex

• For 𝑢 ∈ 𝑉, 𝐴𝑑𝑗[𝑢] consists of all vertices adjacent to 𝑢

a

dc

b

a

b

c

d

b

a

d

d c

c

a b

a c

a

b

c

d

b

c

d

d c a

dc

b

If weighted, store weights also in adjacency lists

Adjacency Lists

COMP550@UNC 9

• For directed graphs:

• Sum of lengths of all adj. lists is

 σ𝑣∈𝑉 out-degree(𝑣) = |𝐸|

• Total storage: (𝑉 + 𝐸)

• For undirected graphs:

• Sum of lengths of all adj. lists is

 σ𝑣∈𝑉 degree(𝑣) = 2|𝐸|

• Total storage: (𝑉 + 𝐸)

Adjacency Lists

COMP550@UNC 10

• Pros

• Space-efficient, when a graph is sparse.

• Can be modified to support many graph variants.

• Cons

• Determining if an edge (𝑢, 𝑣) 𝐸 is not efficient.

• Have to search in 𝑢’s adjacency list in (𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)) time.

• (𝑉) in the worst case.

Adjacency Matrix

COMP550@UNC 11

• |𝑉|  |𝑉| matrix 𝐴

• Number vertices from 1 to |𝑉| in some arbitrary manner

a

dc

b
1 2

3 4

1 2 3 4
1 0 1 1 1
2 1 0 1 0
3 1 1 0 1
4 1 0 1 0

a

dc

b
1 2

3 4

1 2 3 4
1 0 1 1 1
2 0 0 1 0
3 0 0 0 1
4 0 0 0 0



 

==
otherwise0

),(if1
],[

Eji
ajiA ij

Adjacency Matrix

COMP550@UNC 12

• Space: (𝑉2)

• Not memory efficient for large graphs

• Time: to list all vertices adjacent to 𝑢: (𝑉)

• Time: to determine if 𝑢, 𝑣 ∈ 𝐸: (1)

• Can store weights instead of bits for weighted graph.

13

Graph Search

COMP550@UNC

• Searching a graph:

• Systematically follow the edges of a graph to visit the vertices of

the graph

• Used to discover the structure of a graph

• Standard graph-searching algorithms

• Breadth-first Search (BFS)

• Depth-first Search (DFS)

14

Breadth-First Search (BFS)

COMP550@UNC

• Given a graph 𝐺 = 𝑉, 𝐸 and a source vertex 𝑠, want to discover vertices

reachable from 𝑠 and their shortest path distance from 𝑠

• Input: Graph 𝐺 = (𝑉, 𝐸), either directed or undirected, and a source

vertex 𝑠 ∈ 𝑉

• Output:

• 𝑣. 𝑑 = distance (smallest # of edges, or shortest path) from 𝑠 to 𝑣, for all

𝑣 ∈ 𝑉. 𝑣. 𝑑 = ∞ if 𝑣 is not reachable from 𝑠.

• 𝑣.  = 𝑢 such that (𝑢, 𝑣) is last edge on shortest path 𝑠 𝑣

• 𝑢 is 𝑣’s predecessor.

• Builds breadth-first tree with root 𝑠 that contains all reachable vertices

15

Breadth-First Search (BFS)

COMP550@UNC

• We want our search algorithm to produce shortest distance from 𝑠 to 𝑣

for all 𝑣.

• Idea:

• Notation: Shortest-path distance from 𝑠 to 𝑣 is 𝛿(𝑠, 𝑣)

• If 𝛿 𝑠, 𝑣 = 𝑥 ≥ 1, then there is a vertex 𝑢 with 𝛿 𝑠, 𝑢 = 𝑥 − 1

• We want to discover 𝑣 via 𝑢

s u v

𝑥

𝑥 − 1

16

Breadth-First Search (BFS)

COMP550@UNC

• Expands the frontier between discovered and undiscovered

vertices uniformly across the breadth of the frontier.

• A vertex is “discovered” the first time it is encountered during the

search.

• A vertex is “finished” if all vertices adjacent to it have been

discovered.

• Colors the vertices to keep track of progress.

• White – Undiscovered.

• Gray – Discovered but not finished.

• Black – Finished.

• Colors are basically different numbers/characters

• Colors are also not required

S2

2

2

2

2

2

Finished

Discovered

Undiscovered

Breadth-First Search (BFS)

COMP550@UNC 17

i) Dequeue 𝒔, ii) Enqueue 𝒔’s undiscovered
neighbors {𝑟, 𝑣, 𝑢}, make then gray, and
update their 𝑑 and 𝜋, iii) Make 𝒔 black

Q holds discovered by unfinished vertices (gray
vertices).

Breadth-First Search (BFS)

COMP550@UNC 18

i) Dequeue 𝒓, ii) Enqueue 𝒓’s undiscovered
neighbors {𝑡, 𝑤}, make then gray, and
update their 𝑑 and 𝜋, iii) Make 𝒓 black

Q holds discovered by unfinished vertices (gray
vertices).

Breadth-First Search (BFS)

COMP550@UNC 19

i) Dequeue 𝒖, ii) Enqueue 𝒖’s undiscovered
neighbors {𝑦}, make then gray, and
update their 𝑑 and 𝜋, iii) Make 𝒖 black

Q holds discovered by unfinished vertices (gray
vertices).

Breadth-First Search (BFS)

COMP550@UNC 20

i) Dequeue 𝒗, ii) Enqueue 𝒗’s undiscovered
neighbors (None), make then gray, and
update their 𝑑 and 𝜋, iii) Make 𝒗 black

Q holds discovered by unfinished vertices (gray
vertices).

Breadth-First Search (BFS)

COMP550@UNC 21

i) Dequeue 𝒕, ii) Enqueue 𝒕’s undiscovered
neighbors (None), make then gray, and
update their 𝑑 and 𝜋, iii) Make 𝒕 black

Q holds discovered by unfinished vertices (gray
vertices).

Breadth-First Search (BFS)

COMP550@UNC 22

i) Dequeue 𝒘, ii) Enqueue 𝒘’s undiscovered
neighbors {𝑥, 𝑧}, make then gray, and
update their 𝑑 and 𝜋, iii) Make 𝒘 black

Q holds discovered by unfinished vertices (gray
vertices).

Breadth-First Search (BFS)

COMP550@UNC 23

i) Dequeue 𝒚, ii) Enqueue 𝒚’s undiscovered
neighbors (None), make then gray, and
update their 𝑑 and 𝜋, iii) Make 𝒚 black

Q holds discovered by unfinished vertices (gray
vertices).

Breadth-First Search (BFS)

COMP550@UNC 24

i) Dequeue 𝒙, ii) Enqueue 𝒙’s undiscovered
neighbors (None), make then gray, and
update their 𝑑 and 𝜋, iii) Make 𝒙 black

Q holds discovered by unfinished vertices (gray
vertices).

Breadth-First Search (BFS)

COMP550@UNC 25

i) Dequeue 𝒛, ii) Enqueue 𝒛’s undiscovered
neighbors (None), make then gray, and
update their 𝑑 and 𝜋, iii) Make 𝒛 black

Q holds discovered by unfinished vertices (gray
vertices).

Breadth-First Search (BFS)

COMP550@UNC 26

BFS tree formed by blue edges

Q holds discovered by unfinished vertices (gray
vertices).

BFS Time Complexity

COMP550@UNC 27

• Initialization (lines 1-4): Θ 𝑉

• Lines 5-9: Θ(1)

• Aggregate analysis for lines 10-18

• Each vertex is enqueued and dequeued at most

once

• Line 11, 14-16 take Θ(𝑉) time

• Adjacency list of each vertex is scanned at most

once.

• Line 12-13 take Θ 𝐸 time

• With adjacency list, running time Θ V + E

• With adjacency matrix, running time Θ(𝑉2)

Depth-First Search (DFS)

COMP550@UNC 28

• Explore edges out of the most recently discovered vertex v.

• When all edges of v have been explored, backtrack to explore other

edges leaving the vertex from which v was discovered (its predecessor).

• “Search as deep as possible first.”

• Continue until all vertices reachable from the original source are

discovered.

• If any undiscovered vertices remain, then one of them is chosen as a

new source and search is repeated from that source.

Depth-First Search (DFS)

COMP550@UNC 29

• Input: 𝐺 = (𝑉, 𝐸), directed or undirected. No source vertex!

• Output:

• 2 timestamps on each vertex. Integers between 1 and 2|𝑉|

• 𝑣. 𝑑 = discovery time (𝑣 turns from white to gray)

• 𝑣. 𝑓 = finishing time (𝑣 turns from gray to black)

• 𝑣.  : predecessor of 𝑣 = 𝑢, such that v was discovered during the

scan of 𝑢’s adjacency list

• Uses the same coloring scheme for vertices as BFS

Depth-First Search (DFS)

COMP550@UNC 30

DFS(𝑮)

1. for each vertex 𝑢 ∈ 𝐺. 𝑉

2. 𝑢. 𝑐𝑜𝑙𝑜𝑟 = white

3. 𝑢. 𝜋 = NIL

4. time = 0

5. for each vertex 𝑢 ∈ 𝐺. 𝑉

6. if 𝑢. 𝑐𝑜𝑙𝑜𝑟 == white

7. DFS-Visit(𝐺, 𝑢)

Uses a global timestamp time.

DFS-Visit(𝑮, 𝒖)

1. 𝑢.color = GRAY //white vertex u has been discovered

2. time = time + 1

3. u.d = time

4. for each 𝑣  G.Adj[𝑢] // explore each edge (𝑢, 𝑣)

5. if 𝑣.color = WHITE

6. 𝑣. = u

7. DFS-Visit(𝐺, 𝑣)

8. 𝑢.color = BLACK // Blacken u; it is finished

9. 𝑢.f = time

10. time = time + 1

Depth-First Search (DFS)

COMP550@UNC 31

(Courtesy of Prof. Jim Anderson)

Depth-First Search (DFS)

COMP550@UNC 32

Depth-First Search (DFS)

COMP550@UNC 33

Depth-First Search (DFS)

COMP550@UNC 34

Depth-First Search (DFS)

COMP550@UNC 35

Back Edge: (𝑥, 𝑣) is a back edge if it is
explored when both 𝑥 and 𝑣 are grey.
(𝑥 is discovered by a path from 𝑣, i.e.,
𝒗 is an ancestor of 𝒙)

Depth-First Search (DFS)

COMP550@UNC 36

Depth-First Search (DFS)

COMP550@UNC 37

Depth-First Search (DFS)

COMP550@UNC 38

Depth-First Search (DFS)

COMP550@UNC 39

Forward Edge: (𝑢, 𝑥) is a forward edge
if 𝑥 is discovered by a “>1”-length path
from 𝑢. (𝒙 is a descendant of 𝒖)

Depth-First Search (DFS)

COMP550@UNC 40

Depth-First Search (DFS)

COMP550@UNC 41

Depth-First Search (DFS)

COMP550@UNC 42

Cross Edge: (𝑤, 𝑦) is a back edge if no
ancestor descendant relationships
between them.

Depth-First Search (DFS)

COMP550@UNC 43

Depth-First Search (DFS)

COMP550@UNC 44

Depth-First Search (DFS)

COMP550@UNC 45

Self loops are considered as back edge

Depth-First Search (DFS)

COMP550@UNC 46

Depth-First Forest

COMP550@UNC 47

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

• DFS creates a forest (subgraph induced by the

red edges in the example)

• Forest: An acyclic graph G that may be

disconnected. (G has multiple trees)

• Tree edge: Edges in the forest

• Edge that discovers new vertices

• Recall:

• Back edge: edge from a descendant to an ancestor

• Forward edge: edge from ancestor to a proper

descendant

Depth-First Forest

COMP550@UNC 48

• Recall:

• Back edge: edge from a descendant to an ancestor

• Forward edge: edge from ancestor to a proper

descendant

• Cross edge: no ancestor descendant relationship

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

• Vocabulary:

• End-points of tree edges are predecessors and successors (e.g., 𝑣 is processor of 𝑦)

• 𝑢 is an ancestor of 𝑣 is we can go to 𝑣 from 𝑢 using tree edges only

• u is a proper ancestor of v if we can go to 𝑣 from 𝑢 using at least two tree edges

only

Depth-First Search (DFS)

COMP550@UNC 49

• DFS(𝐺) lines 1-3 & 5-6 take (V) time, line

4 takes Θ 1 time

• DFS-Visit is called once for each white

vertex 𝑢 ∈ 𝑉 when it’s painted gray the

first time. Lines 3-6 of DFS-Visit is

executed |𝐴𝑑𝑗[𝑢]| times. The total cost of

executing DFS-Visit is 𝑣𝑉|𝐴𝑑𝑗[𝑢]| = (𝐸)

• Total running time of DFS is (𝑉 + 𝐸)

Parentheses Theorem

COMP550@UNC 50

• 𝑢. 𝑑 < 𝑣. 𝑑 < 𝑢. 𝑓 < 𝑣. 𝑓 is impossible

• Like parentheses:

• OK: () [] ([]) [()]

• Not OK: ([)] [(])

Theorem 20.7

For all 𝑢, 𝑣, exactly one of the following holds:

1. The intervals [𝑢. 𝑑, 𝑢. 𝑓] and [𝑣. 𝑑, 𝑣. 𝑓] are entirely disjoint and neither 𝑢
nor 𝑣 is a descendant of the other.

2. [𝑣. 𝑑, 𝑣. 𝑓] is contained within [𝑢. 𝑑, 𝑢, 𝑓] and 𝑣 is a descendant of 𝑢.

3. 𝑢. 𝑑, 𝑢. 𝑓 is contained within [𝑣. 𝑑, 𝑣. 𝑓] and 𝑢 is a descendant of 𝑣.

Parentheses Theorem

COMP550@UNC 51

(u (v (y (x x) y) v u) (w (z z) w)

Topological Sorting

COMP550@UNC 52

• Directed Acyclic Graph (DAG): directed graph with no cycle

• Can be used to model dependency relationship

• Topological Sort: Ordering of vertices of a DAG so that for any edge

𝑢, 𝑣 , 𝑢 appears before 𝑣 in the ordering

u v w

x y z

w z v yu x

Topological Sorting

COMP550@UNC 53

• Topological Sort: Ordering of vertices of a DAG so that for any edge

𝑢, 𝑣 , 𝑢 appears before 𝑣 in the ordering

Thank You!

COMP550@UNC 54

	Slide 1: COMP 550 Algorithm and Analysis Elementary Graph Algorithms Based on CLRS Sec. 20 and Appendix B.4
	Slide 2: Graph: Terminology
	Slide 3: Graph: Terminology
	Slide 4: Graph: Terminology
	Slide 5: Graph: Terminology
	Slide 6: Applications
	Slide 7: Graph Representations
	Slide 8: Adjacency Lists
	Slide 9: Adjacency Lists
	Slide 10: Adjacency Lists
	Slide 11: Adjacency Matrix
	Slide 12: Adjacency Matrix
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Breadth-First Search (BFS)
	Slide 18: Breadth-First Search (BFS)
	Slide 19: Breadth-First Search (BFS)
	Slide 20: Breadth-First Search (BFS)
	Slide 21: Breadth-First Search (BFS)
	Slide 22: Breadth-First Search (BFS)
	Slide 23: Breadth-First Search (BFS)
	Slide 24: Breadth-First Search (BFS)
	Slide 25: Breadth-First Search (BFS)
	Slide 26: Breadth-First Search (BFS)
	Slide 27: BFS Time Complexity
	Slide 28: Depth-First Search (DFS)
	Slide 29: Depth-First Search (DFS)
	Slide 30: Depth-First Search (DFS)
	Slide 31: Depth-First Search (DFS)
	Slide 32: Depth-First Search (DFS)
	Slide 33: Depth-First Search (DFS)
	Slide 34: Depth-First Search (DFS)
	Slide 35: Depth-First Search (DFS)
	Slide 36: Depth-First Search (DFS)
	Slide 37: Depth-First Search (DFS)
	Slide 38: Depth-First Search (DFS)
	Slide 39: Depth-First Search (DFS)
	Slide 40: Depth-First Search (DFS)
	Slide 41: Depth-First Search (DFS)
	Slide 42: Depth-First Search (DFS)
	Slide 43: Depth-First Search (DFS)
	Slide 44: Depth-First Search (DFS)
	Slide 45: Depth-First Search (DFS)
	Slide 46: Depth-First Search (DFS)
	Slide 47: Depth-First Forest
	Slide 48: Depth-First Forest
	Slide 49: Depth-First Search (DFS)
	Slide 50: Parentheses Theorem
	Slide 51: Parentheses Theorem
	Slide 52: Topological Sorting
	Slide 53: Topological Sorting
	Slide 54: Thank You!

